base 26 to senary (base 6) | ||
---|---|---|
010 | = 026 | = 06 |
110 | = 126 | = 16 |
210 | = 226 | = 26 |
310 | = 326 | = 36 |
410 | = 426 | = 46 |
510 | = 526 | = 56 |
610 | = 626 | = 106 |
710 | = 726 | = 116 |
810 | = 826 | = 126 |
910 | = 926 | = 136 |
1010 | = a26 | = 146 |
1110 | = b26 | = 156 |
1210 | = c26 | = 206 |
1310 | = d26 | = 216 |
1410 | = e26 | = 226 |
1510 | = f26 | = 236 |
1610 | = g26 | = 246 |
1710 | = h26 | = 256 |
1810 | = i26 | = 306 |
1910 | = j26 | = 316 |
2010 | = k26 | = 326 |
2110 | = l26 | = 336 |
2210 | = m26 | = 346 |
base 26 to senary (base 6) | ||
---|---|---|
2310 | = n26 | = 356 |
2410 | = o26 | = 406 |
2510 | = p26 | = 416 |
2610 | = 1026 | = 426 |
2710 | = 1126 | = 436 |
2810 | = 1226 | = 446 |
2910 | = 1326 | = 456 |
3010 | = 1426 | = 506 |
3110 | = 1526 | = 516 |
3210 | = 1626 | = 526 |
3310 | = 1726 | = 536 |
3410 | = 1826 | = 546 |
3510 | = 1926 | = 556 |
3610 | = 1a26 | = 1006 |
3710 | = 1b26 | = 1016 |
3810 | = 1c26 | = 1026 |
3910 | = 1d26 | = 1036 |
4010 | = 1e26 | = 1046 |
4110 | = 1f26 | = 1056 |
4210 | = 1g26 | = 1106 |
4310 | = 1h26 | = 1116 |
4410 | = 1i26 | = 1126 |
4510 | = 1j26 | = 1136 |
base 26 to senary (base 6) | ||
---|---|---|
4610 | = 1k26 | = 1146 |
4710 | = 1l26 | = 1156 |
4810 | = 1m26 | = 1206 |
4910 | = 1n26 | = 1216 |
5010 | = 1o26 | = 1226 |
5110 | = 1p26 | = 1236 |
5210 | = 2026 | = 1246 |
5310 | = 2126 | = 1256 |
5410 | = 2226 | = 1306 |
5510 | = 2326 | = 1316 |
5610 | = 2426 | = 1326 |
5710 | = 2526 | = 1336 |
5810 | = 2626 | = 1346 |
5910 | = 2726 | = 1356 |
6010 | = 2826 | = 1406 |
6110 | = 2926 | = 1416 |
6210 | = 2a26 | = 1426 |
6310 | = 2b26 | = 1436 |
6410 | = 2c26 | = 1446 |
6510 | = 2d26 | = 1456 |
6610 | = 2e26 | = 1506 |
6710 | = 2f26 | = 1516 |
6810 | = 2g26 | = 1526 |
base 26 to senary (base 6) | ||
---|---|---|
6910 | = 2h26 | = 1536 |
7010 | = 2i26 | = 1546 |
The senary numeral system (also known as base-6 or heximal) has six as its base. It has been adopted independently by a small number of cultures. Like decimal, it is a semiprime, though being the product of the only two consecutive numbers that are both prime (2 and 3) it has a high degree of mathematical properties for its size. As six is a superior highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6.