Base 4 to Binary (base 2) Conversion Table

Quick Find Conversion Table

0 - 23
base 4 to binary (base 2)
010 = 04= 02
110 = 14= 12
210 = 24= 102
310 = 34= 112
410 = 104= 1002
510 = 114= 1012
610 = 124= 1102
710 = 134= 1112
810 = 204= 10002
910 = 214= 10012
1010 = 224= 10102
1110 = 234= 10112
1210 = 304= 11002
1310 = 314= 11012
1410 = 324= 11102
1510 = 334= 11112
1610 = 1004= 100002
1710 = 1014= 100012
1810 = 1024= 100102
1910 = 1034= 100112
2010 = 1104= 101002
2110 = 1114= 101012
2210 = 1124= 101102
23 - 46
base 4 to binary (base 2)
2310 = 1134= 101112
2410 = 1204= 110002
2510 = 1214= 110012
2610 = 1224= 110102
2710 = 1234= 110112
2810 = 1304= 111002
2910 = 1314= 111012
3010 = 1324= 111102
3110 = 1334= 111112
3210 = 2004= 1000002
3310 = 2014= 1000012
3410 = 2024= 1000102
3510 = 2034= 1000112
3610 = 2104= 1001002
3710 = 2114= 1001012
3810 = 2124= 1001102
3910 = 2134= 1001112
4010 = 2204= 1010002
4110 = 2214= 1010012
4210 = 2224= 1010102
4310 = 2234= 1010112
4410 = 2304= 1011002
4510 = 2314= 1011012
46 - 69
base 4 to binary (base 2)
4610 = 2324= 1011102
4710 = 2334= 1011112
4810 = 3004= 1100002
4910 = 3014= 1100012
5010 = 3024= 1100102
5110 = 3034= 1100112
5210 = 3104= 1101002
5310 = 3114= 1101012
5410 = 3124= 1101102
5510 = 3134= 1101112
5610 = 3204= 1110002
5710 = 3214= 1110012
5810 = 3224= 1110102
5910 = 3234= 1110112
6010 = 3304= 1111002
6110 = 3314= 1111012
6210 = 3324= 1111102
6310 = 3334= 1111112
6410 = 10004= 10000002
6510 = 10014= 10000012
6610 = 10024= 10000102
6710 = 10034= 10000112
6810 = 10104= 10001002
69 - 92
base 4 to binary (base 2)
6910 = 10114= 10001012
7010 = 10124= 10001102

base 4

base 4 is a positional numeral system with four as its base. It uses 4 different digits for representing numbers. The digits for base 4 could be 0, 1, 2, and 3.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.