Base 5 to Binary (base 2) Conversion Table

Quick Find Conversion Table

0 - 23
base 5 to binary (base 2)
010 = 05= 02
110 = 15= 12
210 = 25= 102
310 = 35= 112
410 = 45= 1002
510 = 105= 1012
610 = 115= 1102
710 = 125= 1112
810 = 135= 10002
910 = 145= 10012
1010 = 205= 10102
1110 = 215= 10112
1210 = 225= 11002
1310 = 235= 11012
1410 = 245= 11102
1510 = 305= 11112
1610 = 315= 100002
1710 = 325= 100012
1810 = 335= 100102
1910 = 345= 100112
2010 = 405= 101002
2110 = 415= 101012
2210 = 425= 101102
23 - 46
base 5 to binary (base 2)
2310 = 435= 101112
2410 = 445= 110002
2510 = 1005= 110012
2610 = 1015= 110102
2710 = 1025= 110112
2810 = 1035= 111002
2910 = 1045= 111012
3010 = 1105= 111102
3110 = 1115= 111112
3210 = 1125= 1000002
3310 = 1135= 1000012
3410 = 1145= 1000102
3510 = 1205= 1000112
3610 = 1215= 1001002
3710 = 1225= 1001012
3810 = 1235= 1001102
3910 = 1245= 1001112
4010 = 1305= 1010002
4110 = 1315= 1010012
4210 = 1325= 1010102
4310 = 1335= 1010112
4410 = 1345= 1011002
4510 = 1405= 1011012
46 - 69
base 5 to binary (base 2)
4610 = 1415= 1011102
4710 = 1425= 1011112
4810 = 1435= 1100002
4910 = 1445= 1100012
5010 = 2005= 1100102
5110 = 2015= 1100112
5210 = 2025= 1101002
5310 = 2035= 1101012
5410 = 2045= 1101102
5510 = 2105= 1101112
5610 = 2115= 1110002
5710 = 2125= 1110012
5810 = 2135= 1110102
5910 = 2145= 1110112
6010 = 2205= 1111002
6110 = 2215= 1111012
6210 = 2225= 1111102
6310 = 2235= 1111112
6410 = 2245= 10000002
6510 = 2305= 10000012
6610 = 2315= 10000102
6710 = 2325= 10000112
6810 = 2335= 10001002
69 - 92
base 5 to binary (base 2)
6910 = 2345= 10001012
7010 = 2405= 10001102

base 5

base 5 is a positional numeral system with five as its base. It uses 5 different digits for representing numbers. The digits for base 5 could be 0, 1, 2, 3, and 4.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.