Base 6 to Binary (base 2) Conversion Table

Quick Find Conversion Table

0 - 23
base 6 to binary (base 2)
010 = 06= 02
110 = 16= 12
210 = 26= 102
310 = 36= 112
410 = 46= 1002
510 = 56= 1012
610 = 106= 1102
710 = 116= 1112
810 = 126= 10002
910 = 136= 10012
1010 = 146= 10102
1110 = 156= 10112
1210 = 206= 11002
1310 = 216= 11012
1410 = 226= 11102
1510 = 236= 11112
1610 = 246= 100002
1710 = 256= 100012
1810 = 306= 100102
1910 = 316= 100112
2010 = 326= 101002
2110 = 336= 101012
2210 = 346= 101102
23 - 46
base 6 to binary (base 2)
2310 = 356= 101112
2410 = 406= 110002
2510 = 416= 110012
2610 = 426= 110102
2710 = 436= 110112
2810 = 446= 111002
2910 = 456= 111012
3010 = 506= 111102
3110 = 516= 111112
3210 = 526= 1000002
3310 = 536= 1000012
3410 = 546= 1000102
3510 = 556= 1000112
3610 = 1006= 1001002
3710 = 1016= 1001012
3810 = 1026= 1001102
3910 = 1036= 1001112
4010 = 1046= 1010002
4110 = 1056= 1010012
4210 = 1106= 1010102
4310 = 1116= 1010112
4410 = 1126= 1011002
4510 = 1136= 1011012
46 - 69
base 6 to binary (base 2)
4610 = 1146= 1011102
4710 = 1156= 1011112
4810 = 1206= 1100002
4910 = 1216= 1100012
5010 = 1226= 1100102
5110 = 1236= 1100112
5210 = 1246= 1101002
5310 = 1256= 1101012
5410 = 1306= 1101102
5510 = 1316= 1101112
5610 = 1326= 1110002
5710 = 1336= 1110012
5810 = 1346= 1110102
5910 = 1356= 1110112
6010 = 1406= 1111002
6110 = 1416= 1111012
6210 = 1426= 1111102
6310 = 1436= 1111112
6410 = 1446= 10000002
6510 = 1456= 10000012
6610 = 1506= 10000102
6710 = 1516= 10000112
6810 = 1526= 10001002
69 - 92
base 6 to binary (base 2)
6910 = 1536= 10001012
7010 = 1546= 10001102

base 6

base 6 is a positional numeral system with six as its base. It uses 6 different digits for representing numbers. The digits for base 6 could be 0, 1, 2, 3, 4, and 5.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.