Base 8 to Binary (base 2) Conversion Table

Quick Find Conversion Table

0 - 23
base 8 to binary (base 2)
010 = 08= 02
110 = 18= 12
210 = 28= 102
310 = 38= 112
410 = 48= 1002
510 = 58= 1012
610 = 68= 1102
710 = 78= 1112
810 = 108= 10002
910 = 118= 10012
1010 = 128= 10102
1110 = 138= 10112
1210 = 148= 11002
1310 = 158= 11012
1410 = 168= 11102
1510 = 178= 11112
1610 = 208= 100002
1710 = 218= 100012
1810 = 228= 100102
1910 = 238= 100112
2010 = 248= 101002
2110 = 258= 101012
2210 = 268= 101102
23 - 46
base 8 to binary (base 2)
2310 = 278= 101112
2410 = 308= 110002
2510 = 318= 110012
2610 = 328= 110102
2710 = 338= 110112
2810 = 348= 111002
2910 = 358= 111012
3010 = 368= 111102
3110 = 378= 111112
3210 = 408= 1000002
3310 = 418= 1000012
3410 = 428= 1000102
3510 = 438= 1000112
3610 = 448= 1001002
3710 = 458= 1001012
3810 = 468= 1001102
3910 = 478= 1001112
4010 = 508= 1010002
4110 = 518= 1010012
4210 = 528= 1010102
4310 = 538= 1010112
4410 = 548= 1011002
4510 = 558= 1011012
46 - 69
base 8 to binary (base 2)
4610 = 568= 1011102
4710 = 578= 1011112
4810 = 608= 1100002
4910 = 618= 1100012
5010 = 628= 1100102
5110 = 638= 1100112
5210 = 648= 1101002
5310 = 658= 1101012
5410 = 668= 1101102
5510 = 678= 1101112
5610 = 708= 1110002
5710 = 718= 1110012
5810 = 728= 1110102
5910 = 738= 1110112
6010 = 748= 1111002
6110 = 758= 1111012
6210 = 768= 1111102
6310 = 778= 1111112
6410 = 1008= 10000002
6510 = 1018= 10000012
6610 = 1028= 10000102
6710 = 1038= 10000112
6810 = 1048= 10001002
69 - 92
base 8 to binary (base 2)
6910 = 1058= 10001012
7010 = 1068= 10001102

base 8

base 8 is a positional numeral system with eight as its base. It uses 8 different digits for representing numbers. The digits for base 8 could be 0, 1, 2, 3, 4, 5, 6, and 7.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.