Binary (base 2) to Base 15 Conversion Table

Quick Find Conversion Table

0 - 23
binary (base 2) to base 15
010 = 02= 015
110 = 12= 115
210 = 102= 215
310 = 112= 315
410 = 1002= 415
510 = 1012= 515
610 = 1102= 615
710 = 1112= 715
810 = 10002= 815
910 = 10012= 915
1010 = 10102= a15
1110 = 10112= b15
1210 = 11002= c15
1310 = 11012= d15
1410 = 11102= e15
1510 = 11112= 1015
1610 = 100002= 1115
1710 = 100012= 1215
1810 = 100102= 1315
1910 = 100112= 1415
2010 = 101002= 1515
2110 = 101012= 1615
2210 = 101102= 1715
23 - 46
binary (base 2) to base 15
2310 = 101112= 1815
2410 = 110002= 1915
2510 = 110012= 1a15
2610 = 110102= 1b15
2710 = 110112= 1c15
2810 = 111002= 1d15
2910 = 111012= 1e15
3010 = 111102= 2015
3110 = 111112= 2115
3210 = 1000002= 2215
3310 = 1000012= 2315
3410 = 1000102= 2415
3510 = 1000112= 2515
3610 = 1001002= 2615
3710 = 1001012= 2715
3810 = 1001102= 2815
3910 = 1001112= 2915
4010 = 1010002= 2a15
4110 = 1010012= 2b15
4210 = 1010102= 2c15
4310 = 1010112= 2d15
4410 = 1011002= 2e15
4510 = 1011012= 3015
46 - 69
binary (base 2) to base 15
4610 = 1011102= 3115
4710 = 1011112= 3215
4810 = 1100002= 3315
4910 = 1100012= 3415
5010 = 1100102= 3515
5110 = 1100112= 3615
5210 = 1101002= 3715
5310 = 1101012= 3815
5410 = 1101102= 3915
5510 = 1101112= 3a15
5610 = 1110002= 3b15
5710 = 1110012= 3c15
5810 = 1110102= 3d15
5910 = 1110112= 3e15
6010 = 1111002= 4015
6110 = 1111012= 4115
6210 = 1111102= 4215
6310 = 1111112= 4315
6410 = 10000002= 4415
6510 = 10000012= 4515
6610 = 10000102= 4615
6710 = 10000112= 4715
6810 = 10001002= 4815
69 - 92
binary (base 2) to base 15
6910 = 10001012= 4915
7010 = 10001102= 4a15

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 15

base 15 is a positional numeral system with fifteen as its base. It uses 15 different digits for representing numbers. The digits for base 15 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, and e.