Binary (base 2) to Base 2 Conversion Table

Quick Find Conversion Table

0 - 23
binary (base 2) to base 2
010 = 02= 02
110 = 12= 12
210 = 102= 102
310 = 112= 112
410 = 1002= 1002
510 = 1012= 1012
610 = 1102= 1102
710 = 1112= 1112
810 = 10002= 10002
910 = 10012= 10012
1010 = 10102= 10102
1110 = 10112= 10112
1210 = 11002= 11002
1310 = 11012= 11012
1410 = 11102= 11102
1510 = 11112= 11112
1610 = 100002= 100002
1710 = 100012= 100012
1810 = 100102= 100102
1910 = 100112= 100112
2010 = 101002= 101002
2110 = 101012= 101012
2210 = 101102= 101102
23 - 46
binary (base 2) to base 2
2310 = 101112= 101112
2410 = 110002= 110002
2510 = 110012= 110012
2610 = 110102= 110102
2710 = 110112= 110112
2810 = 111002= 111002
2910 = 111012= 111012
3010 = 111102= 111102
3110 = 111112= 111112
3210 = 1000002= 1000002
3310 = 1000012= 1000012
3410 = 1000102= 1000102
3510 = 1000112= 1000112
3610 = 1001002= 1001002
3710 = 1001012= 1001012
3810 = 1001102= 1001102
3910 = 1001112= 1001112
4010 = 1010002= 1010002
4110 = 1010012= 1010012
4210 = 1010102= 1010102
4310 = 1010112= 1010112
4410 = 1011002= 1011002
4510 = 1011012= 1011012
46 - 69
binary (base 2) to base 2
4610 = 1011102= 1011102
4710 = 1011112= 1011112
4810 = 1100002= 1100002
4910 = 1100012= 1100012
5010 = 1100102= 1100102
5110 = 1100112= 1100112
5210 = 1101002= 1101002
5310 = 1101012= 1101012
5410 = 1101102= 1101102
5510 = 1101112= 1101112
5610 = 1110002= 1110002
5710 = 1110012= 1110012
5810 = 1110102= 1110102
5910 = 1110112= 1110112
6010 = 1111002= 1111002
6110 = 1111012= 1111012
6210 = 1111102= 1111102
6310 = 1111112= 1111112
6410 = 10000002= 10000002
6510 = 10000012= 10000012
6610 = 10000102= 10000102
6710 = 10000112= 10000112
6810 = 10001002= 10001002
69 - 92
binary (base 2) to base 2
6910 = 10001012= 10001012
7010 = 10001102= 10001102

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 2

base 2 is a positional numeral system with two as its base. It uses 2 different digits for representing numbers. The digits for base 2 could be 0, and 1.