Binary (base 2) to Base 36 Conversion Table

Quick Find Conversion Table

0 - 23
binary (base 2) to base 36
010 = 02= 036
110 = 12= 136
210 = 102= 236
310 = 112= 336
410 = 1002= 436
510 = 1012= 536
610 = 1102= 636
710 = 1112= 736
810 = 10002= 836
910 = 10012= 936
1010 = 10102= a36
1110 = 10112= b36
1210 = 11002= c36
1310 = 11012= d36
1410 = 11102= e36
1510 = 11112= f36
1610 = 100002= g36
1710 = 100012= h36
1810 = 100102= i36
1910 = 100112= j36
2010 = 101002= k36
2110 = 101012= l36
2210 = 101102= m36
23 - 46
binary (base 2) to base 36
2310 = 101112= n36
2410 = 110002= o36
2510 = 110012= p36
2610 = 110102= q36
2710 = 110112= r36
2810 = 111002= s36
2910 = 111012= t36
3010 = 111102= u36
3110 = 111112= v36
3210 = 1000002= w36
3310 = 1000012= x36
3410 = 1000102= y36
3510 = 1000112= z36
3610 = 1001002= 1036
3710 = 1001012= 1136
3810 = 1001102= 1236
3910 = 1001112= 1336
4010 = 1010002= 1436
4110 = 1010012= 1536
4210 = 1010102= 1636
4310 = 1010112= 1736
4410 = 1011002= 1836
4510 = 1011012= 1936
46 - 69
binary (base 2) to base 36
4610 = 1011102= 1a36
4710 = 1011112= 1b36
4810 = 1100002= 1c36
4910 = 1100012= 1d36
5010 = 1100102= 1e36
5110 = 1100112= 1f36
5210 = 1101002= 1g36
5310 = 1101012= 1h36
5410 = 1101102= 1i36
5510 = 1101112= 1j36
5610 = 1110002= 1k36
5710 = 1110012= 1l36
5810 = 1110102= 1m36
5910 = 1110112= 1n36
6010 = 1111002= 1o36
6110 = 1111012= 1p36
6210 = 1111102= 1q36
6310 = 1111112= 1r36
6410 = 10000002= 1s36
6510 = 10000012= 1t36
6610 = 10000102= 1u36
6710 = 10000112= 1v36
6810 = 10001002= 1w36
69 - 92
binary (base 2) to base 36
6910 = 10001012= 1x36
7010 = 10001102= 1y36

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 36

base 36 is a positional numeral system with thirty-six as its base. It uses 36 different digits for representing numbers. The digits for base 36 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, and z.