Binary (base 2) to Octal (base 8) Conversion Table

Quick Find Conversion Table

0 - 23
binary (base 2) to octal (base 8)
010 = 02= 08
110 = 12= 18
210 = 102= 28
310 = 112= 38
410 = 1002= 48
510 = 1012= 58
610 = 1102= 68
710 = 1112= 78
810 = 10002= 108
910 = 10012= 118
1010 = 10102= 128
1110 = 10112= 138
1210 = 11002= 148
1310 = 11012= 158
1410 = 11102= 168
1510 = 11112= 178
1610 = 100002= 208
1710 = 100012= 218
1810 = 100102= 228
1910 = 100112= 238
2010 = 101002= 248
2110 = 101012= 258
2210 = 101102= 268
23 - 46
binary (base 2) to octal (base 8)
2310 = 101112= 278
2410 = 110002= 308
2510 = 110012= 318
2610 = 110102= 328
2710 = 110112= 338
2810 = 111002= 348
2910 = 111012= 358
3010 = 111102= 368
3110 = 111112= 378
3210 = 1000002= 408
3310 = 1000012= 418
3410 = 1000102= 428
3510 = 1000112= 438
3610 = 1001002= 448
3710 = 1001012= 458
3810 = 1001102= 468
3910 = 1001112= 478
4010 = 1010002= 508
4110 = 1010012= 518
4210 = 1010102= 528
4310 = 1010112= 538
4410 = 1011002= 548
4510 = 1011012= 558
46 - 69
binary (base 2) to octal (base 8)
4610 = 1011102= 568
4710 = 1011112= 578
4810 = 1100002= 608
4910 = 1100012= 618
5010 = 1100102= 628
5110 = 1100112= 638
5210 = 1101002= 648
5310 = 1101012= 658
5410 = 1101102= 668
5510 = 1101112= 678
5610 = 1110002= 708
5710 = 1110012= 718
5810 = 1110102= 728
5910 = 1110112= 738
6010 = 1111002= 748
6110 = 1111012= 758
6210 = 1111102= 768
6310 = 1111112= 778
6410 = 10000002= 1008
6510 = 10000012= 1018
6610 = 10000102= 1028
6710 = 10000112= 1038
6810 = 10001002= 1048
69 - 92
binary (base 2) to octal (base 8)
6910 = 10001012= 1058
7010 = 10001102= 1068

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.