Decimal to Binary (base 2) Conversion Table

Quick Find Conversion Table

0 - 23
decimal to binary (base 2)
010= 02
110= 12
210= 102
310= 112
410= 1002
510= 1012
610= 1102
710= 1112
810= 10002
910= 10012
1010= 10102
1110= 10112
1210= 11002
1310= 11012
1410= 11102
1510= 11112
1610= 100002
1710= 100012
1810= 100102
1910= 100112
2010= 101002
2110= 101012
2210= 101102
23 - 46
decimal to binary (base 2)
2310= 101112
2410= 110002
2510= 110012
2610= 110102
2710= 110112
2810= 111002
2910= 111012
3010= 111102
3110= 111112
3210= 1000002
3310= 1000012
3410= 1000102
3510= 1000112
3610= 1001002
3710= 1001012
3810= 1001102
3910= 1001112
4010= 1010002
4110= 1010012
4210= 1010102
4310= 1010112
4410= 1011002
4510= 1011012
46 - 69
decimal to binary (base 2)
4610= 1011102
4710= 1011112
4810= 1100002
4910= 1100012
5010= 1100102
5110= 1100112
5210= 1101002
5310= 1101012
5410= 1101102
5510= 1101112
5610= 1110002
5710= 1110012
5810= 1110102
5910= 1110112
6010= 1111002
6110= 1111012
6210= 1111102
6310= 1111112
6410= 10000002
6510= 10000012
6610= 10000102
6710= 10000112
6810= 10001002
69 - 92
decimal to binary (base 2)
6910= 10001012
7010= 10001102

decimal

The decimal numeral system (also called base-ten positional numeral system, and occasionally called denary) is the standard system for denoting integer and non-integer numbers. It has ten as its base.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.