Duodecimal (base 12) to Binary (base 2) Conversion Table

Quick Find Conversion Table

0 - 23
duodecimal (base 12) to binary (base 2)
010 = 012= 02
110 = 112= 12
210 = 212= 102
310 = 312= 112
410 = 412= 1002
510 = 512= 1012
610 = 612= 1102
710 = 712= 1112
810 = 812= 10002
910 = 912= 10012
1010 = a12= 10102
1110 = b12= 10112
1210 = 1012= 11002
1310 = 1112= 11012
1410 = 1212= 11102
1510 = 1312= 11112
1610 = 1412= 100002
1710 = 1512= 100012
1810 = 1612= 100102
1910 = 1712= 100112
2010 = 1812= 101002
2110 = 1912= 101012
2210 = 1a12= 101102
23 - 46
duodecimal (base 12) to binary (base 2)
2310 = 1b12= 101112
2410 = 2012= 110002
2510 = 2112= 110012
2610 = 2212= 110102
2710 = 2312= 110112
2810 = 2412= 111002
2910 = 2512= 111012
3010 = 2612= 111102
3110 = 2712= 111112
3210 = 2812= 1000002
3310 = 2912= 1000012
3410 = 2a12= 1000102
3510 = 2b12= 1000112
3610 = 3012= 1001002
3710 = 3112= 1001012
3810 = 3212= 1001102
3910 = 3312= 1001112
4010 = 3412= 1010002
4110 = 3512= 1010012
4210 = 3612= 1010102
4310 = 3712= 1010112
4410 = 3812= 1011002
4510 = 3912= 1011012
46 - 69
duodecimal (base 12) to binary (base 2)
4610 = 3a12= 1011102
4710 = 3b12= 1011112
4810 = 4012= 1100002
4910 = 4112= 1100012
5010 = 4212= 1100102
5110 = 4312= 1100112
5210 = 4412= 1101002
5310 = 4512= 1101012
5410 = 4612= 1101102
5510 = 4712= 1101112
5610 = 4812= 1110002
5710 = 4912= 1110012
5810 = 4a12= 1110102
5910 = 4b12= 1110112
6010 = 5012= 1111002
6110 = 5112= 1111012
6210 = 5212= 1111102
6310 = 5312= 1111112
6410 = 5412= 10000002
6510 = 5512= 10000012
6610 = 5612= 10000102
6710 = 5712= 10000112
6810 = 5812= 10001002
69 - 92
duodecimal (base 12) to binary (base 2)
6910 = 5912= 10001012
7010 = 5a12= 10001102

duodecimal (base 12)

The duodecimal system (also known as base 12 or dozenal) is a positional notation numeral system using twelve as its base.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.