Hexadecimal (base 16) to Senary (base 6) Conversion Table

Quick Find Conversion Table

0 - 23
hexadecimal (base 16) to senary (base 6)
010 = 016= 06
110 = 116= 16
210 = 216= 26
310 = 316= 36
410 = 416= 46
510 = 516= 56
610 = 616= 106
710 = 716= 116
810 = 816= 126
910 = 916= 136
1010 = a16= 146
1110 = b16= 156
1210 = c16= 206
1310 = d16= 216
1410 = e16= 226
1510 = f16= 236
1610 = 1016= 246
1710 = 1116= 256
1810 = 1216= 306
1910 = 1316= 316
2010 = 1416= 326
2110 = 1516= 336
2210 = 1616= 346
23 - 46
hexadecimal (base 16) to senary (base 6)
2310 = 1716= 356
2410 = 1816= 406
2510 = 1916= 416
2610 = 1a16= 426
2710 = 1b16= 436
2810 = 1c16= 446
2910 = 1d16= 456
3010 = 1e16= 506
3110 = 1f16= 516
3210 = 2016= 526
3310 = 2116= 536
3410 = 2216= 546
3510 = 2316= 556
3610 = 2416= 1006
3710 = 2516= 1016
3810 = 2616= 1026
3910 = 2716= 1036
4010 = 2816= 1046
4110 = 2916= 1056
4210 = 2a16= 1106
4310 = 2b16= 1116
4410 = 2c16= 1126
4510 = 2d16= 1136
46 - 69
hexadecimal (base 16) to senary (base 6)
4610 = 2e16= 1146
4710 = 2f16= 1156
4810 = 3016= 1206
4910 = 3116= 1216
5010 = 3216= 1226
5110 = 3316= 1236
5210 = 3416= 1246
5310 = 3516= 1256
5410 = 3616= 1306
5510 = 3716= 1316
5610 = 3816= 1326
5710 = 3916= 1336
5810 = 3a16= 1346
5910 = 3b16= 1356
6010 = 3c16= 1406
6110 = 3d16= 1416
6210 = 3e16= 1426
6310 = 3f16= 1436
6410 = 4016= 1446
6510 = 4116= 1456
6610 = 4216= 1506
6710 = 4316= 1516
6810 = 4416= 1526
69 - 92
hexadecimal (base 16) to senary (base 6)
6910 = 4516= 1536
7010 = 4616= 1546

hexadecimal (base 16)

In mathematics and computing, hexadecimal (also base 16, or hex) is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, and A, B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.

senary (base 6)

The senary numeral system (also known as base-6 or heximal) has six as its base. It has been adopted independently by a small number of cultures. Like decimal, it is a semiprime, though being the product of the only two consecutive numbers that are both prime (2 and 3) it has a high degree of mathematical properties for its size. As six is a superior highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6.