Octal (base 8) Conversion

Quick Find Conversion

Conversion table

decimal11021031041051061071081091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991010010
base 8182838485868781081181281381481581681782082182282382482582682783083183283383483583683784084184284384484584684785085185285385485585685786086186286386486586686787087187287387487587687781008101810281038104810581068107811081118112811381148115811681178120812181228123812481258126812781308131813281338134813581368137814081418142814381448

Octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.