Octal (base 8) to Binary (base 2) Conversion Table

Quick Find Conversion Table

0 - 23
octal (base 8) to binary (base 2)
010 = 08= 02
110 = 18= 12
210 = 28= 102
310 = 38= 112
410 = 48= 1002
510 = 58= 1012
610 = 68= 1102
710 = 78= 1112
810 = 108= 10002
910 = 118= 10012
1010 = 128= 10102
1110 = 138= 10112
1210 = 148= 11002
1310 = 158= 11012
1410 = 168= 11102
1510 = 178= 11112
1610 = 208= 100002
1710 = 218= 100012
1810 = 228= 100102
1910 = 238= 100112
2010 = 248= 101002
2110 = 258= 101012
2210 = 268= 101102
23 - 46
octal (base 8) to binary (base 2)
2310 = 278= 101112
2410 = 308= 110002
2510 = 318= 110012
2610 = 328= 110102
2710 = 338= 110112
2810 = 348= 111002
2910 = 358= 111012
3010 = 368= 111102
3110 = 378= 111112
3210 = 408= 1000002
3310 = 418= 1000012
3410 = 428= 1000102
3510 = 438= 1000112
3610 = 448= 1001002
3710 = 458= 1001012
3810 = 468= 1001102
3910 = 478= 1001112
4010 = 508= 1010002
4110 = 518= 1010012
4210 = 528= 1010102
4310 = 538= 1010112
4410 = 548= 1011002
4510 = 558= 1011012
46 - 69
octal (base 8) to binary (base 2)
4610 = 568= 1011102
4710 = 578= 1011112
4810 = 608= 1100002
4910 = 618= 1100012
5010 = 628= 1100102
5110 = 638= 1100112
5210 = 648= 1101002
5310 = 658= 1101012
5410 = 668= 1101102
5510 = 678= 1101112
5610 = 708= 1110002
5710 = 718= 1110012
5810 = 728= 1110102
5910 = 738= 1110112
6010 = 748= 1111002
6110 = 758= 1111012
6210 = 768= 1111102
6310 = 778= 1111112
6410 = 1008= 10000002
6510 = 1018= 10000012
6610 = 1028= 10000102
6710 = 1038= 10000112
6810 = 1048= 10001002
69 - 92
octal (base 8) to binary (base 2)
6910 = 1058= 10001012
7010 = 1068= 10001102

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.