quaternary (base 4) to base 26 | ||
---|---|---|
010 | = 04 | = 026 |
110 | = 14 | = 126 |
210 | = 24 | = 226 |
310 | = 34 | = 326 |
410 | = 104 | = 426 |
510 | = 114 | = 526 |
610 | = 124 | = 626 |
710 | = 134 | = 726 |
810 | = 204 | = 826 |
910 | = 214 | = 926 |
1010 | = 224 | = a26 |
1110 | = 234 | = b26 |
1210 | = 304 | = c26 |
1310 | = 314 | = d26 |
1410 | = 324 | = e26 |
1510 | = 334 | = f26 |
1610 | = 1004 | = g26 |
1710 | = 1014 | = h26 |
1810 | = 1024 | = i26 |
1910 | = 1034 | = j26 |
2010 | = 1104 | = k26 |
2110 | = 1114 | = l26 |
2210 | = 1124 | = m26 |
quaternary (base 4) to base 26 | ||
---|---|---|
2310 | = 1134 | = n26 |
2410 | = 1204 | = o26 |
2510 | = 1214 | = p26 |
2610 | = 1224 | = 1026 |
2710 | = 1234 | = 1126 |
2810 | = 1304 | = 1226 |
2910 | = 1314 | = 1326 |
3010 | = 1324 | = 1426 |
3110 | = 1334 | = 1526 |
3210 | = 2004 | = 1626 |
3310 | = 2014 | = 1726 |
3410 | = 2024 | = 1826 |
3510 | = 2034 | = 1926 |
3610 | = 2104 | = 1a26 |
3710 | = 2114 | = 1b26 |
3810 | = 2124 | = 1c26 |
3910 | = 2134 | = 1d26 |
4010 | = 2204 | = 1e26 |
4110 | = 2214 | = 1f26 |
4210 | = 2224 | = 1g26 |
4310 | = 2234 | = 1h26 |
4410 | = 2304 | = 1i26 |
4510 | = 2314 | = 1j26 |
quaternary (base 4) to base 26 | ||
---|---|---|
4610 | = 2324 | = 1k26 |
4710 | = 2334 | = 1l26 |
4810 | = 3004 | = 1m26 |
4910 | = 3014 | = 1n26 |
5010 | = 3024 | = 1o26 |
5110 | = 3034 | = 1p26 |
5210 | = 3104 | = 2026 |
5310 | = 3114 | = 2126 |
5410 | = 3124 | = 2226 |
5510 | = 3134 | = 2326 |
5610 | = 3204 | = 2426 |
5710 | = 3214 | = 2526 |
5810 | = 3224 | = 2626 |
5910 | = 3234 | = 2726 |
6010 | = 3304 | = 2826 |
6110 | = 3314 | = 2926 |
6210 | = 3324 | = 2a26 |
6310 | = 3334 | = 2b26 |
6410 | = 10004 | = 2c26 |
6510 | = 10014 | = 2d26 |
6610 | = 10024 | = 2e26 |
6710 | = 10034 | = 2f26 |
6810 | = 10104 | = 2g26 |
quaternary (base 4) to base 26 | ||
---|---|---|
6910 | = 10114 | = 2h26 |
7010 | = 10124 | = 2i26 |
Quaternary is the base-4 numeral system. It uses the digits 0, 1, 2 and 3 to represent any real number.