senary (base 6) to base 26 | ||
---|---|---|
010 | = 06 | = 026 |
110 | = 16 | = 126 |
210 | = 26 | = 226 |
310 | = 36 | = 326 |
410 | = 46 | = 426 |
510 | = 56 | = 526 |
610 | = 106 | = 626 |
710 | = 116 | = 726 |
810 | = 126 | = 826 |
910 | = 136 | = 926 |
1010 | = 146 | = a26 |
1110 | = 156 | = b26 |
1210 | = 206 | = c26 |
1310 | = 216 | = d26 |
1410 | = 226 | = e26 |
1510 | = 236 | = f26 |
1610 | = 246 | = g26 |
1710 | = 256 | = h26 |
1810 | = 306 | = i26 |
1910 | = 316 | = j26 |
2010 | = 326 | = k26 |
2110 | = 336 | = l26 |
2210 | = 346 | = m26 |
senary (base 6) to base 26 | ||
---|---|---|
2310 | = 356 | = n26 |
2410 | = 406 | = o26 |
2510 | = 416 | = p26 |
2610 | = 426 | = 1026 |
2710 | = 436 | = 1126 |
2810 | = 446 | = 1226 |
2910 | = 456 | = 1326 |
3010 | = 506 | = 1426 |
3110 | = 516 | = 1526 |
3210 | = 526 | = 1626 |
3310 | = 536 | = 1726 |
3410 | = 546 | = 1826 |
3510 | = 556 | = 1926 |
3610 | = 1006 | = 1a26 |
3710 | = 1016 | = 1b26 |
3810 | = 1026 | = 1c26 |
3910 | = 1036 | = 1d26 |
4010 | = 1046 | = 1e26 |
4110 | = 1056 | = 1f26 |
4210 | = 1106 | = 1g26 |
4310 | = 1116 | = 1h26 |
4410 | = 1126 | = 1i26 |
4510 | = 1136 | = 1j26 |
senary (base 6) to base 26 | ||
---|---|---|
4610 | = 1146 | = 1k26 |
4710 | = 1156 | = 1l26 |
4810 | = 1206 | = 1m26 |
4910 | = 1216 | = 1n26 |
5010 | = 1226 | = 1o26 |
5110 | = 1236 | = 1p26 |
5210 | = 1246 | = 2026 |
5310 | = 1256 | = 2126 |
5410 | = 1306 | = 2226 |
5510 | = 1316 | = 2326 |
5610 | = 1326 | = 2426 |
5710 | = 1336 | = 2526 |
5810 | = 1346 | = 2626 |
5910 | = 1356 | = 2726 |
6010 | = 1406 | = 2826 |
6110 | = 1416 | = 2926 |
6210 | = 1426 | = 2a26 |
6310 | = 1436 | = 2b26 |
6410 | = 1446 | = 2c26 |
6510 | = 1456 | = 2d26 |
6610 | = 1506 | = 2e26 |
6710 | = 1516 | = 2f26 |
6810 | = 1526 | = 2g26 |
senary (base 6) to base 26 | ||
---|---|---|
6910 | = 1536 | = 2h26 |
7010 | = 1546 | = 2i26 |
The senary numeral system (also known as base-6 or heximal) has six as its base. It has been adopted independently by a small number of cultures. Like decimal, it is a semiprime, though being the product of the only two consecutive numbers that are both prime (2 and 3) it has a high degree of mathematical properties for its size. As six is a superior highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6.