bookmark

Base 12 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 12 to octal (base 8)
012= 08
112= 18
212= 28
312= 38
412= 48
512= 58
612= 68
712= 78
812= 108
912= 118
a12= 128
b12= 138
1012= 148
1112= 158
1212= 168
1312= 178
1412= 208
1512= 218
1612= 228
1712= 238
1812= 248
1912= 258
1a12= 268
1b12= 278
24 - 47
base 12 to octal (base 8)
2012= 308
2112= 318
2212= 328
2312= 338
2412= 348
2512= 358
2612= 368
2712= 378
2812= 408
2912= 418
2a12= 428
2b12= 438
3012= 448
3112= 458
3212= 468
3312= 478
3412= 508
3512= 518
3612= 528
3712= 538
3812= 548
3912= 558
3a12= 568
3b12= 578
48 - 71
base 12 to octal (base 8)
4012= 608
4112= 618
4212= 628
4312= 638
4412= 648
4512= 658
4612= 668
4712= 678
4812= 708
4912= 718
4a12= 728
4b12= 738
5012= 748
5112= 758
5212= 768
5312= 778
5412= 1008
5512= 1018
5612= 1028
5712= 1038
5812= 1048
5912= 1058
5a12= 1068

base 12

base 12 is a positional numeral system with twelve as its base. It uses 12 different digits for representing numbers. The digits for base 12 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, and b.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.