bookmark

Base 14 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 14 to octal (base 8)
014= 08
114= 18
214= 28
314= 38
414= 48
514= 58
614= 68
714= 78
814= 108
914= 118
a14= 128
b14= 138
c14= 148
d14= 158
1014= 168
1114= 178
1214= 208
1314= 218
1414= 228
1514= 238
1614= 248
1714= 258
1814= 268
1914= 278
24 - 47
base 14 to octal (base 8)
1a14= 308
1b14= 318
1c14= 328
1d14= 338
2014= 348
2114= 358
2214= 368
2314= 378
2414= 408
2514= 418
2614= 428
2714= 438
2814= 448
2914= 458
2a14= 468
2b14= 478
2c14= 508
2d14= 518
3014= 528
3114= 538
3214= 548
3314= 558
3414= 568
3514= 578
48 - 71
base 14 to octal (base 8)
3614= 608
3714= 618
3814= 628
3914= 638
3a14= 648
3b14= 658
3c14= 668
3d14= 678
4014= 708
4114= 718
4214= 728
4314= 738
4414= 748
4514= 758
4614= 768
4714= 778
4814= 1008
4914= 1018
4a14= 1028
4b14= 1038
4c14= 1048
4d14= 1058
5014= 1068

base 14

base 14 is a positional numeral system with fourteen as its base. It uses 14 different digits for representing numbers. The digits for base 14 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, and d.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.