bookmark

Base 2 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 2 to octal (base 8)
02= 08
12= 18
102= 28
112= 38
1002= 48
1012= 58
1102= 68
1112= 78
10002= 108
10012= 118
10102= 128
10112= 138
11002= 148
11012= 158
11102= 168
11112= 178
100002= 208
100012= 218
100102= 228
100112= 238
101002= 248
101012= 258
101102= 268
101112= 278
24 - 47
base 2 to octal (base 8)
110002= 308
110012= 318
110102= 328
110112= 338
111002= 348
111012= 358
111102= 368
111112= 378
1000002= 408
1000012= 418
1000102= 428
1000112= 438
1001002= 448
1001012= 458
1001102= 468
1001112= 478
1010002= 508
1010012= 518
1010102= 528
1010112= 538
1011002= 548
1011012= 558
1011102= 568
1011112= 578
48 - 71
base 2 to octal (base 8)
1100002= 608
1100012= 618
1100102= 628
1100112= 638
1101002= 648
1101012= 658
1101102= 668
1101112= 678
1110002= 708
1110012= 718
1110102= 728
1110112= 738
1111002= 748
1111012= 758
1111102= 768
1111112= 778
10000002= 1008
10000012= 1018
10000102= 1028
10000112= 1038
10001002= 1048
10001012= 1058
10001102= 1068

base 2

base 2 is a positional numeral system with two as its base. It uses 2 different digits for representing numbers. The digits for base 2 could be 0, and 1.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.