bookmark

Base 20 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 20 to octal (base 8)
020= 08
120= 18
220= 28
320= 38
420= 48
520= 58
620= 68
720= 78
820= 108
920= 118
a20= 128
b20= 138
c20= 148
d20= 158
e20= 168
f20= 178
g20= 208
h20= 218
i20= 228
j20= 238
1020= 248
1120= 258
1220= 268
1320= 278
24 - 47
base 20 to octal (base 8)
1420= 308
1520= 318
1620= 328
1720= 338
1820= 348
1920= 358
1a20= 368
1b20= 378
1c20= 408
1d20= 418
1e20= 428
1f20= 438
1g20= 448
1h20= 458
1i20= 468
1j20= 478
2020= 508
2120= 518
2220= 528
2320= 538
2420= 548
2520= 558
2620= 568
2720= 578
48 - 71
base 20 to octal (base 8)
2820= 608
2920= 618
2a20= 628
2b20= 638
2c20= 648
2d20= 658
2e20= 668
2f20= 678
2g20= 708
2h20= 718
2i20= 728
2j20= 738
3020= 748
3120= 758
3220= 768
3320= 778
3420= 1008
3520= 1018
3620= 1028
3720= 1038
3820= 1048
3920= 1058
3a20= 1068

base 20

base 20 is a positional numeral system with twenty as its base. It uses 20 different digits for representing numbers. The digits for base 20 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, and j.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.