bookmark

Base 24 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 24 to octal (base 8)
024= 08
124= 18
224= 28
324= 38
424= 48
524= 58
624= 68
724= 78
824= 108
924= 118
a24= 128
b24= 138
c24= 148
d24= 158
e24= 168
f24= 178
g24= 208
h24= 218
i24= 228
j24= 238
k24= 248
l24= 258
m24= 268
n24= 278
24 - 47
base 24 to octal (base 8)
1024= 308
1124= 318
1224= 328
1324= 338
1424= 348
1524= 358
1624= 368
1724= 378
1824= 408
1924= 418
1a24= 428
1b24= 438
1c24= 448
1d24= 458
1e24= 468
1f24= 478
1g24= 508
1h24= 518
1i24= 528
1j24= 538
1k24= 548
1l24= 558
1m24= 568
1n24= 578
48 - 71
base 24 to octal (base 8)
2024= 608
2124= 618
2224= 628
2324= 638
2424= 648
2524= 658
2624= 668
2724= 678
2824= 708
2924= 718
2a24= 728
2b24= 738
2c24= 748
2d24= 758
2e24= 768
2f24= 778
2g24= 1008
2h24= 1018
2i24= 1028
2j24= 1038
2k24= 1048
2l24= 1058
2m24= 1068

base 24

base 24 is a positional numeral system with twenty-four as its base. It uses 24 different digits for representing numbers. The digits for base 24 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, and n.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.