bookmark

Base 25 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 25 to octal (base 8)
025= 08
125= 18
225= 28
325= 38
425= 48
525= 58
625= 68
725= 78
825= 108
925= 118
a25= 128
b25= 138
c25= 148
d25= 158
e25= 168
f25= 178
g25= 208
h25= 218
i25= 228
j25= 238
k25= 248
l25= 258
m25= 268
n25= 278
24 - 47
base 25 to octal (base 8)
o25= 308
1025= 318
1125= 328
1225= 338
1325= 348
1425= 358
1525= 368
1625= 378
1725= 408
1825= 418
1925= 428
1a25= 438
1b25= 448
1c25= 458
1d25= 468
1e25= 478
1f25= 508
1g25= 518
1h25= 528
1i25= 538
1j25= 548
1k25= 558
1l25= 568
1m25= 578
48 - 71
base 25 to octal (base 8)
1n25= 608
1o25= 618
2025= 628
2125= 638
2225= 648
2325= 658
2425= 668
2525= 678
2625= 708
2725= 718
2825= 728
2925= 738
2a25= 748
2b25= 758
2c25= 768
2d25= 778
2e25= 1008
2f25= 1018
2g25= 1028
2h25= 1038
2i25= 1048
2j25= 1058
2k25= 1068

base 25

base 25 is a positional numeral system with twenty-five as its base. It uses 25 different digits for representing numbers. The digits for base 25 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, and o.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.