bookmark

Base 27 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 27 to octal (base 8)
027= 08
127= 18
227= 28
327= 38
427= 48
527= 58
627= 68
727= 78
827= 108
927= 118
a27= 128
b27= 138
c27= 148
d27= 158
e27= 168
f27= 178
g27= 208
h27= 218
i27= 228
j27= 238
k27= 248
l27= 258
m27= 268
n27= 278
24 - 47
base 27 to octal (base 8)
o27= 308
p27= 318
q27= 328
1027= 338
1127= 348
1227= 358
1327= 368
1427= 378
1527= 408
1627= 418
1727= 428
1827= 438
1927= 448
1a27= 458
1b27= 468
1c27= 478
1d27= 508
1e27= 518
1f27= 528
1g27= 538
1h27= 548
1i27= 558
1j27= 568
1k27= 578
48 - 71
base 27 to octal (base 8)
1l27= 608
1m27= 618
1n27= 628
1o27= 638
1p27= 648
1q27= 658
2027= 668
2127= 678
2227= 708
2327= 718
2427= 728
2527= 738
2627= 748
2727= 758
2827= 768
2927= 778
2a27= 1008
2b27= 1018
2c27= 1028
2d27= 1038
2e27= 1048
2f27= 1058
2g27= 1068

base 27

base 27 is a positional numeral system with twenty-seven as its base. It uses 27 different digits for representing numbers. The digits for base 27 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, and q.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.