bookmark

Base 30 to Binary (base 2)

Converter Tool

to


 
base 30 is a positional numeral system with thirty as its base. It uses 30 different digits for representing numbers. The digits for base 30 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, and t.

conversion table

base 30binary (base 2)base 30binary (base 2)
1= 1b= 1011
2= 10c= 1100
3= 11d= 1101
4= 100e= 1110
5= 101f= 1111
6= 110g= 10000
7= 111h= 10001
8= 1000i= 10010
9= 1001j= 10011
a= 1010k= 10100

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

conversion table

binary (base 2)base 30binary (base 2)base 30
1≈ 11011≈ b
10≈ 21100≈ c
11≈ 31101≈ d
100≈ 41110≈ e
101≈ 51111≈ f
110≈ 610000≈ g
111≈ 710001≈ h
1000≈ 810010≈ i
1001≈ 910011≈ j
1010≈ a10100≈ k