bookmark

Base 31 to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 31 to binary (base 2)
031= 02
131= 12
231= 102
331= 112
431= 1002
531= 1012
631= 1102
731= 1112
831= 10002
931= 10012
a31= 10102
b31= 10112
c31= 11002
d31= 11012
e31= 11102
f31= 11112
g31= 100002
h31= 100012
i31= 100102
j31= 100112
k31= 101002
l31= 101012
m31= 101102
n31= 101112
24 - 47
base 31 to binary (base 2)
o31= 110002
p31= 110012
q31= 110102
r31= 110112
s31= 111002
t31= 111012
u31= 111102
1031= 111112
1131= 1000002
1231= 1000012
1331= 1000102
1431= 1000112
1531= 1001002
1631= 1001012
1731= 1001102
1831= 1001112
1931= 1010002
1a31= 1010012
1b31= 1010102
1c31= 1010112
1d31= 1011002
1e31= 1011012
1f31= 1011102
1g31= 1011112
48 - 71
base 31 to binary (base 2)
1h31= 1100002
1i31= 1100012
1j31= 1100102
1k31= 1100112
1l31= 1101002
1m31= 1101012
1n31= 1101102
1o31= 1101112
1p31= 1110002
1q31= 1110012
1r31= 1110102
1s31= 1110112
1t31= 1111002
1u31= 1111012
2031= 1111102
2131= 1111112
2231= 10000002
2331= 10000012
2431= 10000102
2531= 10000112
2631= 10001002
2731= 10001012
2831= 10001102

base 31

base 31 is a positional numeral system with thirty-one as its base. It uses 31 different digits for representing numbers. The digits for base 31 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, and u.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.