bookmark

Base 31 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 31 to octal (base 8)
031= 08
131= 18
231= 28
331= 38
431= 48
531= 58
631= 68
731= 78
831= 108
931= 118
a31= 128
b31= 138
c31= 148
d31= 158
e31= 168
f31= 178
g31= 208
h31= 218
i31= 228
j31= 238
k31= 248
l31= 258
m31= 268
n31= 278
24 - 47
base 31 to octal (base 8)
o31= 308
p31= 318
q31= 328
r31= 338
s31= 348
t31= 358
u31= 368
1031= 378
1131= 408
1231= 418
1331= 428
1431= 438
1531= 448
1631= 458
1731= 468
1831= 478
1931= 508
1a31= 518
1b31= 528
1c31= 538
1d31= 548
1e31= 558
1f31= 568
1g31= 578
48 - 71
base 31 to octal (base 8)
1h31= 608
1i31= 618
1j31= 628
1k31= 638
1l31= 648
1m31= 658
1n31= 668
1o31= 678
1p31= 708
1q31= 718
1r31= 728
1s31= 738
1t31= 748
1u31= 758
2031= 768
2131= 778
2231= 1008
2331= 1018
2431= 1028
2531= 1038
2631= 1048
2731= 1058
2831= 1068

base 31

base 31 is a positional numeral system with thirty-one as its base. It uses 31 different digits for representing numbers. The digits for base 31 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, and u.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.