bookmark

Base 31 to Quinary (base 5) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 31 to quinary (base 5)
031= 05
131= 15
231= 25
331= 35
431= 45
531= 105
631= 115
731= 125
831= 135
931= 145
a31= 205
b31= 215
c31= 225
d31= 235
e31= 245
f31= 305
g31= 315
h31= 325
i31= 335
j31= 345
k31= 405
l31= 415
m31= 425
n31= 435
24 - 47
base 31 to quinary (base 5)
o31= 445
p31= 1005
q31= 1015
r31= 1025
s31= 1035
t31= 1045
u31= 1105
1031= 1115
1131= 1125
1231= 1135
1331= 1145
1431= 1205
1531= 1215
1631= 1225
1731= 1235
1831= 1245
1931= 1305
1a31= 1315
1b31= 1325
1c31= 1335
1d31= 1345
1e31= 1405
1f31= 1415
1g31= 1425
48 - 71
base 31 to quinary (base 5)
1h31= 1435
1i31= 1445
1j31= 2005
1k31= 2015
1l31= 2025
1m31= 2035
1n31= 2045
1o31= 2105
1p31= 2115
1q31= 2125
1r31= 2135
1s31= 2145
1t31= 2205
1u31= 2215
2031= 2225
2131= 2235
2231= 2245
2331= 2305
2431= 2315
2531= 2325
2631= 2335
2731= 2345
2831= 2405

base 31

base 31 is a positional numeral system with thirty-one as its base. It uses 31 different digits for representing numbers. The digits for base 31 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, and u.

quinary (base 5)

Quinary (base-5 or pental) is a numeral system with five as the base. A possible origination of a quinary system is that there are five fingers on either hand.