bookmark

Base 32 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 32 to octal (base 8)
032= 08
132= 18
232= 28
332= 38
432= 48
532= 58
632= 68
732= 78
832= 108
932= 118
a32= 128
b32= 138
c32= 148
d32= 158
e32= 168
f32= 178
g32= 208
h32= 218
i32= 228
j32= 238
k32= 248
l32= 258
m32= 268
n32= 278
24 - 47
base 32 to octal (base 8)
o32= 308
p32= 318
q32= 328
r32= 338
s32= 348
t32= 358
u32= 368
v32= 378
1032= 408
1132= 418
1232= 428
1332= 438
1432= 448
1532= 458
1632= 468
1732= 478
1832= 508
1932= 518
1a32= 528
1b32= 538
1c32= 548
1d32= 558
1e32= 568
1f32= 578
48 - 71
base 32 to octal (base 8)
1g32= 608
1h32= 618
1i32= 628
1j32= 638
1k32= 648
1l32= 658
1m32= 668
1n32= 678
1o32= 708
1p32= 718
1q32= 728
1r32= 738
1s32= 748
1t32= 758
1u32= 768
1v32= 778
2032= 1008
2132= 1018
2232= 1028
2332= 1038
2432= 1048
2532= 1058
2632= 1068

base 32

base 32 is a positional numeral system with thirty-two as its base. It uses 32 different digits for representing numbers. The digits for base 32 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, and v.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.