bookmark

Base 4 to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 4 to binary (base 2)
04= 02
14= 12
24= 102
34= 112
104= 1002
114= 1012
124= 1102
134= 1112
204= 10002
214= 10012
224= 10102
234= 10112
304= 11002
314= 11012
324= 11102
334= 11112
1004= 100002
1014= 100012
1024= 100102
1034= 100112
1104= 101002
1114= 101012
1124= 101102
1134= 101112
24 - 47
base 4 to binary (base 2)
1204= 110002
1214= 110012
1224= 110102
1234= 110112
1304= 111002
1314= 111012
1324= 111102
1334= 111112
2004= 1000002
2014= 1000012
2024= 1000102
2034= 1000112
2104= 1001002
2114= 1001012
2124= 1001102
2134= 1001112
2204= 1010002
2214= 1010012
2224= 1010102
2234= 1010112
2304= 1011002
2314= 1011012
2324= 1011102
2334= 1011112
48 - 71
base 4 to binary (base 2)
3004= 1100002
3014= 1100012
3024= 1100102
3034= 1100112
3104= 1101002
3114= 1101012
3124= 1101102
3134= 1101112
3204= 1110002
3214= 1110012
3224= 1110102
3234= 1110112
3304= 1111002
3314= 1111012
3324= 1111102
3334= 1111112
10004= 10000002
10014= 10000012
10024= 10000102
10034= 10000112
10104= 10001002
10114= 10001012
10124= 10001102

base 4

base 4 is a positional numeral system with four as its base. It uses 4 different digits for representing numbers. The digits for base 4 could be 0, 1, 2, and 3.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.