bookmark

Base 4 to Quinary (base 5) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 4 to quinary (base 5)
04= 05
14= 15
24= 25
34= 35
104= 45
114= 105
124= 115
134= 125
204= 135
214= 145
224= 205
234= 215
304= 225
314= 235
324= 245
334= 305
1004= 315
1014= 325
1024= 335
1034= 345
1104= 405
1114= 415
1124= 425
1134= 435
24 - 47
base 4 to quinary (base 5)
1204= 445
1214= 1005
1224= 1015
1234= 1025
1304= 1035
1314= 1045
1324= 1105
1334= 1115
2004= 1125
2014= 1135
2024= 1145
2034= 1205
2104= 1215
2114= 1225
2124= 1235
2134= 1245
2204= 1305
2214= 1315
2224= 1325
2234= 1335
2304= 1345
2314= 1405
2324= 1415
2334= 1425
48 - 71
base 4 to quinary (base 5)
3004= 1435
3014= 1445
3024= 2005
3034= 2015
3104= 2025
3114= 2035
3124= 2045
3134= 2105
3204= 2115
3214= 2125
3224= 2135
3234= 2145
3304= 2205
3314= 2215
3324= 2225
3334= 2235
10004= 2245
10014= 2305
10024= 2315
10034= 2325
10104= 2335
10114= 2345
10124= 2405

base 4

base 4 is a positional numeral system with four as its base. It uses 4 different digits for representing numbers. The digits for base 4 could be 0, 1, 2, and 3.

quinary (base 5)

Quinary (base-5 or pental) is a numeral system with five as the base. A possible origination of a quinary system is that there are five fingers on either hand.