bookmark

Binary (base 2) to Base 12 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 12
02= 012
12= 112
102= 212
112= 312
1002= 412
1012= 512
1102= 612
1112= 712
10002= 812
10012= 912
10102= a12
10112= b12
11002= 1012
11012= 1112
11102= 1212
11112= 1312
100002= 1412
100012= 1512
100102= 1612
100112= 1712
101002= 1812
101012= 1912
101102= 1a12
101112= 1b12
24 - 47
binary (base 2) to base 12
110002= 2012
110012= 2112
110102= 2212
110112= 2312
111002= 2412
111012= 2512
111102= 2612
111112= 2712
1000002= 2812
1000012= 2912
1000102= 2a12
1000112= 2b12
1001002= 3012
1001012= 3112
1001102= 3212
1001112= 3312
1010002= 3412
1010012= 3512
1010102= 3612
1010112= 3712
1011002= 3812
1011012= 3912
1011102= 3a12
1011112= 3b12
48 - 71
binary (base 2) to base 12
1100002= 4012
1100012= 4112
1100102= 4212
1100112= 4312
1101002= 4412
1101012= 4512
1101102= 4612
1101112= 4712
1110002= 4812
1110012= 4912
1110102= 4a12
1110112= 4b12
1111002= 5012
1111012= 5112
1111102= 5212
1111112= 5312
10000002= 5412
10000012= 5512
10000102= 5612
10000112= 5712
10001002= 5812
10001012= 5912
10001102= 5a12

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 12

base 12 is a positional numeral system with twelve as its base. It uses 12 different digits for representing numbers. The digits for base 12 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, and b.