bookmark

Binary (base 2) to Base 14 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 14
02= 014
12= 114
102= 214
112= 314
1002= 414
1012= 514
1102= 614
1112= 714
10002= 814
10012= 914
10102= a14
10112= b14
11002= c14
11012= d14
11102= 1014
11112= 1114
100002= 1214
100012= 1314
100102= 1414
100112= 1514
101002= 1614
101012= 1714
101102= 1814
101112= 1914
24 - 47
binary (base 2) to base 14
110002= 1a14
110012= 1b14
110102= 1c14
110112= 1d14
111002= 2014
111012= 2114
111102= 2214
111112= 2314
1000002= 2414
1000012= 2514
1000102= 2614
1000112= 2714
1001002= 2814
1001012= 2914
1001102= 2a14
1001112= 2b14
1010002= 2c14
1010012= 2d14
1010102= 3014
1010112= 3114
1011002= 3214
1011012= 3314
1011102= 3414
1011112= 3514
48 - 71
binary (base 2) to base 14
1100002= 3614
1100012= 3714
1100102= 3814
1100112= 3914
1101002= 3a14
1101012= 3b14
1101102= 3c14
1101112= 3d14
1110002= 4014
1110012= 4114
1110102= 4214
1110112= 4314
1111002= 4414
1111012= 4514
1111102= 4614
1111112= 4714
10000002= 4814
10000012= 4914
10000102= 4a14
10000112= 4b14
10001002= 4c14
10001012= 4d14
10001102= 5014

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 14

base 14 is a positional numeral system with fourteen as its base. It uses 14 different digits for representing numbers. The digits for base 14 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, and d.