bookmark

Binary (base 2) to Base 16 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 16
02= 016
12= 116
102= 216
112= 316
1002= 416
1012= 516
1102= 616
1112= 716
10002= 816
10012= 916
10102= a16
10112= b16
11002= c16
11012= d16
11102= e16
11112= f16
100002= 1016
100012= 1116
100102= 1216
100112= 1316
101002= 1416
101012= 1516
101102= 1616
101112= 1716
24 - 47
binary (base 2) to base 16
110002= 1816
110012= 1916
110102= 1a16
110112= 1b16
111002= 1c16
111012= 1d16
111102= 1e16
111112= 1f16
1000002= 2016
1000012= 2116
1000102= 2216
1000112= 2316
1001002= 2416
1001012= 2516
1001102= 2616
1001112= 2716
1010002= 2816
1010012= 2916
1010102= 2a16
1010112= 2b16
1011002= 2c16
1011012= 2d16
1011102= 2e16
1011112= 2f16
48 - 71
binary (base 2) to base 16
1100002= 3016
1100012= 3116
1100102= 3216
1100112= 3316
1101002= 3416
1101012= 3516
1101102= 3616
1101112= 3716
1110002= 3816
1110012= 3916
1110102= 3a16
1110112= 3b16
1111002= 3c16
1111012= 3d16
1111102= 3e16
1111112= 3f16
10000002= 4016
10000012= 4116
10000102= 4216
10000112= 4316
10001002= 4416
10001012= 4516
10001102= 4616

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 16

base 16 is a positional numeral system with sixteen as its base. It uses 16 different digits for representing numbers. The digits for base 16 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, and f.