bookmark

Binary (base 2) to Base 18 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 18
02= 018
12= 118
102= 218
112= 318
1002= 418
1012= 518
1102= 618
1112= 718
10002= 818
10012= 918
10102= a18
10112= b18
11002= c18
11012= d18
11102= e18
11112= f18
100002= g18
100012= h18
100102= 1018
100112= 1118
101002= 1218
101012= 1318
101102= 1418
101112= 1518
24 - 47
binary (base 2) to base 18
110002= 1618
110012= 1718
110102= 1818
110112= 1918
111002= 1a18
111012= 1b18
111102= 1c18
111112= 1d18
1000002= 1e18
1000012= 1f18
1000102= 1g18
1000112= 1h18
1001002= 2018
1001012= 2118
1001102= 2218
1001112= 2318
1010002= 2418
1010012= 2518
1010102= 2618
1010112= 2718
1011002= 2818
1011012= 2918
1011102= 2a18
1011112= 2b18
48 - 71
binary (base 2) to base 18
1100002= 2c18
1100012= 2d18
1100102= 2e18
1100112= 2f18
1101002= 2g18
1101012= 2h18
1101102= 3018
1101112= 3118
1110002= 3218
1110012= 3318
1110102= 3418
1110112= 3518
1111002= 3618
1111012= 3718
1111102= 3818
1111112= 3918
10000002= 3a18
10000012= 3b18
10000102= 3c18
10000112= 3d18
10001002= 3e18
10001012= 3f18
10001102= 3g18

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 18

base 18 is a positional numeral system with eighteen as its base. It uses 18 different digits for representing numbers. The digits for base 18 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, and h.