bookmark

Binary (base 2) to Base 20 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 20
02= 020
12= 120
102= 220
112= 320
1002= 420
1012= 520
1102= 620
1112= 720
10002= 820
10012= 920
10102= a20
10112= b20
11002= c20
11012= d20
11102= e20
11112= f20
100002= g20
100012= h20
100102= i20
100112= j20
101002= 1020
101012= 1120
101102= 1220
101112= 1320
24 - 47
binary (base 2) to base 20
110002= 1420
110012= 1520
110102= 1620
110112= 1720
111002= 1820
111012= 1920
111102= 1a20
111112= 1b20
1000002= 1c20
1000012= 1d20
1000102= 1e20
1000112= 1f20
1001002= 1g20
1001012= 1h20
1001102= 1i20
1001112= 1j20
1010002= 2020
1010012= 2120
1010102= 2220
1010112= 2320
1011002= 2420
1011012= 2520
1011102= 2620
1011112= 2720
48 - 71
binary (base 2) to base 20
1100002= 2820
1100012= 2920
1100102= 2a20
1100112= 2b20
1101002= 2c20
1101012= 2d20
1101102= 2e20
1101112= 2f20
1110002= 2g20
1110012= 2h20
1110102= 2i20
1110112= 2j20
1111002= 3020
1111012= 3120
1111102= 3220
1111112= 3320
10000002= 3420
10000012= 3520
10000102= 3620
10000112= 3720
10001002= 3820
10001012= 3920
10001102= 3a20

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 20

base 20 is a positional numeral system with twenty as its base. It uses 20 different digits for representing numbers. The digits for base 20 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, and j.