bookmark

Binary (base 2) to Base 5 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 5
02= 05
12= 15
102= 25
112= 35
1002= 45
1012= 105
1102= 115
1112= 125
10002= 135
10012= 145
10102= 205
10112= 215
11002= 225
11012= 235
11102= 245
11112= 305
100002= 315
100012= 325
100102= 335
100112= 345
101002= 405
101012= 415
101102= 425
101112= 435
24 - 47
binary (base 2) to base 5
110002= 445
110012= 1005
110102= 1015
110112= 1025
111002= 1035
111012= 1045
111102= 1105
111112= 1115
1000002= 1125
1000012= 1135
1000102= 1145
1000112= 1205
1001002= 1215
1001012= 1225
1001102= 1235
1001112= 1245
1010002= 1305
1010012= 1315
1010102= 1325
1010112= 1335
1011002= 1345
1011012= 1405
1011102= 1415
1011112= 1425
48 - 71
binary (base 2) to base 5
1100002= 1435
1100012= 1445
1100102= 2005
1100112= 2015
1101002= 2025
1101012= 2035
1101102= 2045
1101112= 2105
1110002= 2115
1110012= 2125
1110102= 2135
1110112= 2145
1111002= 2205
1111012= 2215
1111102= 2225
1111112= 2235
10000002= 2245
10000012= 2305
10000102= 2315
10000112= 2325
10001002= 2335
10001012= 2345
10001102= 2405

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 5

base 5 is a positional numeral system with five as its base. It uses 5 different digits for representing numbers. The digits for base 5 could be 0, 1, 2, 3, and 4.