bookmark

Binary (base 2) to Base 6 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 6
02= 06
12= 16
102= 26
112= 36
1002= 46
1012= 56
1102= 106
1112= 116
10002= 126
10012= 136
10102= 146
10112= 156
11002= 206
11012= 216
11102= 226
11112= 236
100002= 246
100012= 256
100102= 306
100112= 316
101002= 326
101012= 336
101102= 346
101112= 356
24 - 47
binary (base 2) to base 6
110002= 406
110012= 416
110102= 426
110112= 436
111002= 446
111012= 456
111102= 506
111112= 516
1000002= 526
1000012= 536
1000102= 546
1000112= 556
1001002= 1006
1001012= 1016
1001102= 1026
1001112= 1036
1010002= 1046
1010012= 1056
1010102= 1106
1010112= 1116
1011002= 1126
1011012= 1136
1011102= 1146
1011112= 1156
48 - 71
binary (base 2) to base 6
1100002= 1206
1100012= 1216
1100102= 1226
1100112= 1236
1101002= 1246
1101012= 1256
1101102= 1306
1101112= 1316
1110002= 1326
1110012= 1336
1110102= 1346
1110112= 1356
1111002= 1406
1111012= 1416
1111102= 1426
1111112= 1436
10000002= 1446
10000012= 1456
10000102= 1506
10000112= 1516
10001002= 1526
10001012= 1536
10001102= 1546

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 6

base 6 is a positional numeral system with six as its base. It uses 6 different digits for representing numbers. The digits for base 6 could be 0, 1, 2, 3, 4, and 5.