bookmark

Binary (base 2) to Base 9 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 9
02= 09
12= 19
102= 29
112= 39
1002= 49
1012= 59
1102= 69
1112= 79
10002= 89
10012= 109
10102= 119
10112= 129
11002= 139
11012= 149
11102= 159
11112= 169
100002= 179
100012= 189
100102= 209
100112= 219
101002= 229
101012= 239
101102= 249
101112= 259
24 - 47
binary (base 2) to base 9
110002= 269
110012= 279
110102= 289
110112= 309
111002= 319
111012= 329
111102= 339
111112= 349
1000002= 359
1000012= 369
1000102= 379
1000112= 389
1001002= 409
1001012= 419
1001102= 429
1001112= 439
1010002= 449
1010012= 459
1010102= 469
1010112= 479
1011002= 489
1011012= 509
1011102= 519
1011112= 529
48 - 71
binary (base 2) to base 9
1100002= 539
1100012= 549
1100102= 559
1100112= 569
1101002= 579
1101012= 589
1101102= 609
1101112= 619
1110002= 629
1110012= 639
1110102= 649
1110112= 659
1111002= 669
1111012= 679
1111102= 689
1111112= 709
10000002= 719
10000012= 729
10000102= 739
10000112= 749
10001002= 759
10001012= 769
10001102= 779

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 9

base 9 is a positional numeral system with nine as its base. It uses 9 different digits for representing numbers. The digits for base 9 could be 0, 1, 2, 3, 4, 5, 6, 7, and 8.