bookmark

Binary (base 2) to Hexadecimal (base 16) Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to hexadecimal (base 16)
02= 016
12= 116
102= 216
112= 316
1002= 416
1012= 516
1102= 616
1112= 716
10002= 816
10012= 916
10102= a16
10112= b16
11002= c16
11012= d16
11102= e16
11112= f16
100002= 1016
100012= 1116
100102= 1216
100112= 1316
101002= 1416
101012= 1516
101102= 1616
101112= 1716
24 - 47
binary (base 2) to hexadecimal (base 16)
110002= 1816
110012= 1916
110102= 1a16
110112= 1b16
111002= 1c16
111012= 1d16
111102= 1e16
111112= 1f16
1000002= 2016
1000012= 2116
1000102= 2216
1000112= 2316
1001002= 2416
1001012= 2516
1001102= 2616
1001112= 2716
1010002= 2816
1010012= 2916
1010102= 2a16
1010112= 2b16
1011002= 2c16
1011012= 2d16
1011102= 2e16
1011112= 2f16
48 - 71
binary (base 2) to hexadecimal (base 16)
1100002= 3016
1100012= 3116
1100102= 3216
1100112= 3316
1101002= 3416
1101012= 3516
1101102= 3616
1101112= 3716
1110002= 3816
1110012= 3916
1110102= 3a16
1110112= 3b16
1111002= 3c16
1111012= 3d16
1111102= 3e16
1111112= 3f16
10000002= 4016
10000012= 4116
10000102= 4216
10000112= 4316
10001002= 4416
10001012= 4516
10001102= 4616

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

hexadecimal (base 16)

In mathematics and computing, hexadecimal (also base 16, or hex) is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, and A, B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.