bookmark

Binary (base 2) to Quaternary (base 4) Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to quaternary (base 4)
02= 04
12= 14
102= 24
112= 34
1002= 104
1012= 114
1102= 124
1112= 134
10002= 204
10012= 214
10102= 224
10112= 234
11002= 304
11012= 314
11102= 324
11112= 334
100002= 1004
100012= 1014
100102= 1024
100112= 1034
101002= 1104
101012= 1114
101102= 1124
101112= 1134
24 - 47
binary (base 2) to quaternary (base 4)
110002= 1204
110012= 1214
110102= 1224
110112= 1234
111002= 1304
111012= 1314
111102= 1324
111112= 1334
1000002= 2004
1000012= 2014
1000102= 2024
1000112= 2034
1001002= 2104
1001012= 2114
1001102= 2124
1001112= 2134
1010002= 2204
1010012= 2214
1010102= 2224
1010112= 2234
1011002= 2304
1011012= 2314
1011102= 2324
1011112= 2334
48 - 71
binary (base 2) to quaternary (base 4)
1100002= 3004
1100012= 3014
1100102= 3024
1100112= 3034
1101002= 3104
1101012= 3114
1101102= 3124
1101112= 3134
1110002= 3204
1110012= 3214
1110102= 3224
1110112= 3234
1111002= 3304
1111012= 3314
1111102= 3324
1111112= 3334
10000002= 10004
10000012= 10014
10000102= 10024
10000112= 10034
10001002= 10104
10001012= 10114
10001102= 10124

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

quaternary (base 4)

Quaternary is the base-4 numeral system. It uses the digits 0, 1, 2 and 3 to represent any real number.