bookmark

Binary (base 2) to Vigesimal (base 20) Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to hexadecimal (base 16)
02= 020
12= 120
102= 220
112= 320
1002= 420
1012= 520
1102= 620
1112= 720
10002= 820
10012= 920
10102= a20
10112= b20
11002= c20
11012= d20
11102= e20
11112= f20
100002= g20
100012= h20
100102= i20
100112= j20
101002= 1020
101012= 1120
101102= 1220
101112= 1320
24 - 47
binary (base 2) to hexadecimal (base 16)
110002= 1420
110012= 1520
110102= 1620
110112= 1720
111002= 1820
111012= 1920
111102= 1a20
111112= 1b20
1000002= 1c20
1000012= 1d20
1000102= 1e20
1000112= 1f20
1001002= 1g20
1001012= 1h20
1001102= 1i20
1001112= 1j20
1010002= 2020
1010012= 2120
1010102= 2220
1010112= 2320
1011002= 2420
1011012= 2520
1011102= 2620
1011112= 2720
48 - 71
binary (base 2) to hexadecimal (base 16)
1100002= 2820
1100012= 2920
1100102= 2a20
1100112= 2b20
1101002= 2c20
1101012= 2d20
1101102= 2e20
1101112= 2f20
1110002= 2g20
1110012= 2h20
1110102= 2i20
1110112= 2j20
1111002= 3020
1111012= 3120
1111102= 3220
1111112= 3320
10000002= 3420
10000012= 3520
10000102= 3620
10000112= 3720
10001002= 3820
10001012= 3920
10001102= 3a20

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

hexadecimal (base 16)

The vigesimal or base 20 numeral system is based on twenty (in the same way in which the decimal numeral system is based on ten).