The decimal numeral system (also called base-ten positional numeral system, and occasionally called denary) is the standard system for denoting integer and non-integer numbers. It has ten as its base.
decimal | hexatrigesimal (base 36) | decimal | hexatrigesimal (base 36) |
---|---|---|---|
1 | = 1 | 11 | = b |
2 | = 2 | 12 | = c |
3 | = 3 | 13 | = d |
4 | = 4 | 14 | = e |
5 | = 5 | 15 | = f |
6 | = 6 | 16 | = g |
7 | = 7 | 17 | = h |
8 | = 8 | 18 | = i |
9 | = 9 | 19 | = j |
10 | = a | 20 | = k |
Base36 is a binary-to-text encoding scheme that represents binary data in an ASCII string format by translating it into a radix-36 (aka Hexatrigesimal) representation. The choice of 36 is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z (the ISO basic Latin alphabet).
hexatrigesimal (base 36) | decimal | hexatrigesimal (base 36) | decimal |
---|---|---|---|
1 | ≈ 1 | b | ≈ 11 |
2 | ≈ 2 | c | ≈ 12 |
3 | ≈ 3 | d | ≈ 13 |
4 | ≈ 4 | e | ≈ 14 |
5 | ≈ 5 | f | ≈ 15 |
6 | ≈ 6 | g | ≈ 16 |
7 | ≈ 7 | h | ≈ 17 |
8 | ≈ 8 | i | ≈ 18 |
9 | ≈ 9 | j | ≈ 19 |
a | ≈ 10 | k | ≈ 20 |
decimal | hexatrigesimal (base 36) |
---|---|
1 | = 1 |
2 | = 2 |
3 | = 3 |
4 | = 4 |
5 | = 5 |
6 | = 6 |
7 | = 7 |
8 | = 8 |
9 | = 9 |
10 | = a |