bookmark

Duodecimal (base 12) to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
duodecimal (base 12) to binary (base 2)
012= 02
112= 12
212= 102
312= 112
412= 1002
512= 1012
612= 1102
712= 1112
812= 10002
912= 10012
a12= 10102
b12= 10112
1012= 11002
1112= 11012
1212= 11102
1312= 11112
1412= 100002
1512= 100012
1612= 100102
1712= 100112
1812= 101002
1912= 101012
1a12= 101102
1b12= 101112
24 - 47
duodecimal (base 12) to binary (base 2)
2012= 110002
2112= 110012
2212= 110102
2312= 110112
2412= 111002
2512= 111012
2612= 111102
2712= 111112
2812= 1000002
2912= 1000012
2a12= 1000102
2b12= 1000112
3012= 1001002
3112= 1001012
3212= 1001102
3312= 1001112
3412= 1010002
3512= 1010012
3612= 1010102
3712= 1010112
3812= 1011002
3912= 1011012
3a12= 1011102
3b12= 1011112
48 - 71
duodecimal (base 12) to binary (base 2)
4012= 1100002
4112= 1100012
4212= 1100102
4312= 1100112
4412= 1101002
4512= 1101012
4612= 1101102
4712= 1101112
4812= 1110002
4912= 1110012
4a12= 1110102
4b12= 1110112
5012= 1111002
5112= 1111012
5212= 1111102
5312= 1111112
5412= 10000002
5512= 10000012
5612= 10000102
5712= 10000112
5812= 10001002
5912= 10001012
5a12= 10001102

duodecimal (base 12)

The duodecimal system (also known as base 12 or dozenal) is a positional notation numeral system using twelve as its base.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.