bookmark

Octal (base 8) to Base 13 Conversion Table

Quick Find Conversion Table

to


0 - 23
octal (base 8) to base 13
08= 013
18= 113
28= 213
38= 313
48= 413
58= 513
68= 613
78= 713
108= 813
118= 913
128= a13
138= b13
148= c13
158= 1013
168= 1113
178= 1213
208= 1313
218= 1413
228= 1513
238= 1613
248= 1713
258= 1813
268= 1913
278= 1a13
24 - 47
octal (base 8) to base 13
308= 1b13
318= 1c13
328= 2013
338= 2113
348= 2213
358= 2313
368= 2413
378= 2513
408= 2613
418= 2713
428= 2813
438= 2913
448= 2a13
458= 2b13
468= 2c13
478= 3013
508= 3113
518= 3213
528= 3313
538= 3413
548= 3513
558= 3613
568= 3713
578= 3813
48 - 71
octal (base 8) to base 13
608= 3913
618= 3a13
628= 3b13
638= 3c13
648= 4013
658= 4113
668= 4213
678= 4313
708= 4413
718= 4513
728= 4613
738= 4713
748= 4813
758= 4913
768= 4a13
778= 4b13
1008= 4c13
1018= 5013
1028= 5113
1038= 5213
1048= 5313
1058= 5413
1068= 5513

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

base 13

base 13 is a positional numeral system with thirteen as its base. It uses 13 different digits for representing numbers. The digits for base 13 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, and c.