bookmark

Octal (base 8) to Duodecimal (base 12) Conversion Table

Quick Find Conversion Table

to


0 - 23
octal (base 8) to duodecimal (base 12)
08= 012
18= 112
28= 212
38= 312
48= 412
58= 512
68= 612
78= 712
108= 812
118= 912
128= a12
138= b12
148= 1012
158= 1112
168= 1212
178= 1312
208= 1412
218= 1512
228= 1612
238= 1712
248= 1812
258= 1912
268= 1a12
278= 1b12
24 - 47
octal (base 8) to duodecimal (base 12)
308= 2012
318= 2112
328= 2212
338= 2312
348= 2412
358= 2512
368= 2612
378= 2712
408= 2812
418= 2912
428= 2a12
438= 2b12
448= 3012
458= 3112
468= 3212
478= 3312
508= 3412
518= 3512
528= 3612
538= 3712
548= 3812
558= 3912
568= 3a12
578= 3b12
48 - 71
octal (base 8) to duodecimal (base 12)
608= 4012
618= 4112
628= 4212
638= 4312
648= 4412
658= 4512
668= 4612
678= 4712
708= 4812
718= 4912
728= 4a12
738= 4b12
748= 5012
758= 5112
768= 5212
778= 5312
1008= 5412
1018= 5512
1028= 5612
1038= 5712
1048= 5812
1058= 5912
1068= 5a12

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

duodecimal (base 12)

The duodecimal system (also known as base 12 or dozenal) is a positional notation numeral system using twelve as its base.