bookmark

Quaternary (base 4) to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
quaternary (base 4) to octal (base 8)
04= 08
14= 18
24= 28
34= 38
104= 48
114= 58
124= 68
134= 78
204= 108
214= 118
224= 128
234= 138
304= 148
314= 158
324= 168
334= 178
1004= 208
1014= 218
1024= 228
1034= 238
1104= 248
1114= 258
1124= 268
1134= 278
24 - 47
quaternary (base 4) to octal (base 8)
1204= 308
1214= 318
1224= 328
1234= 338
1304= 348
1314= 358
1324= 368
1334= 378
2004= 408
2014= 418
2024= 428
2034= 438
2104= 448
2114= 458
2124= 468
2134= 478
2204= 508
2214= 518
2224= 528
2234= 538
2304= 548
2314= 558
2324= 568
2334= 578
48 - 71
quaternary (base 4) to octal (base 8)
3004= 608
3014= 618
3024= 628
3034= 638
3104= 648
3114= 658
3124= 668
3134= 678
3204= 708
3214= 718
3224= 728
3234= 738
3304= 748
3314= 758
3324= 768
3334= 778
10004= 1008
10014= 1018
10024= 1028
10034= 1038
10104= 1048
10114= 1058
10124= 1068

quaternary (base 4)

Quaternary is the base-4 numeral system. It uses the digits 0, 1, 2 and 3 to represent any real number.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.