bookmark

Quinary (base 5) to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
quinary (base 5) to binary (base 2)
05= 02
15= 12
25= 102
35= 112
45= 1002
105= 1012
115= 1102
125= 1112
135= 10002
145= 10012
205= 10102
215= 10112
225= 11002
235= 11012
245= 11102
305= 11112
315= 100002
325= 100012
335= 100102
345= 100112
405= 101002
415= 101012
425= 101102
435= 101112
24 - 47
quinary (base 5) to binary (base 2)
445= 110002
1005= 110012
1015= 110102
1025= 110112
1035= 111002
1045= 111012
1105= 111102
1115= 111112
1125= 1000002
1135= 1000012
1145= 1000102
1205= 1000112
1215= 1001002
1225= 1001012
1235= 1001102
1245= 1001112
1305= 1010002
1315= 1010012
1325= 1010102
1335= 1010112
1345= 1011002
1405= 1011012
1415= 1011102
1425= 1011112
48 - 71
quinary (base 5) to binary (base 2)
1435= 1100002
1445= 1100012
2005= 1100102
2015= 1100112
2025= 1101002
2035= 1101012
2045= 1101102
2105= 1101112
2115= 1110002
2125= 1110012
2135= 1110102
2145= 1110112
2205= 1111002
2215= 1111012
2225= 1111102
2235= 1111112
2245= 10000002
2305= 10000012
2315= 10000102
2325= 10000112
2335= 10001002
2345= 10001012
2405= 10001102

quinary (base 5)

Quinary (base-5 or pental) is a numeral system with five as the base. A possible origination of a quinary system is that there are five fingers on either hand.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.