bookmark

Senary (base 6) to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
senary (base 6) to binary (base 2)
06= 02
16= 12
26= 102
36= 112
46= 1002
56= 1012
106= 1102
116= 1112
126= 10002
136= 10012
146= 10102
156= 10112
206= 11002
216= 11012
226= 11102
236= 11112
246= 100002
256= 100012
306= 100102
316= 100112
326= 101002
336= 101012
346= 101102
356= 101112
24 - 47
senary (base 6) to binary (base 2)
406= 110002
416= 110012
426= 110102
436= 110112
446= 111002
456= 111012
506= 111102
516= 111112
526= 1000002
536= 1000012
546= 1000102
556= 1000112
1006= 1001002
1016= 1001012
1026= 1001102
1036= 1001112
1046= 1010002
1056= 1010012
1106= 1010102
1116= 1010112
1126= 1011002
1136= 1011012
1146= 1011102
1156= 1011112
48 - 71
senary (base 6) to binary (base 2)
1206= 1100002
1216= 1100012
1226= 1100102
1236= 1100112
1246= 1101002
1256= 1101012
1306= 1101102
1316= 1101112
1326= 1110002
1336= 1110012
1346= 1110102
1356= 1110112
1406= 1111002
1416= 1111012
1426= 1111102
1436= 1111112
1446= 10000002
1456= 10000012
1506= 10000102
1516= 10000112
1526= 10001002
1536= 10001012
1546= 10001102

senary (base 6)

The senary numeral system (also known as base-6 or heximal) has six as its base. It has been adopted independently by a small number of cultures. Like decimal, it is a semiprime, though being the product of the only two consecutive numbers that are both prime (2 and 3) it has a high degree of mathematical properties for its size. As six is a superior highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.