bookmark

Senary (base 6) to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
senary (base 6) to octal (base 8)
06= 08
16= 18
26= 28
36= 38
46= 48
56= 58
106= 68
116= 78
126= 108
136= 118
146= 128
156= 138
206= 148
216= 158
226= 168
236= 178
246= 208
256= 218
306= 228
316= 238
326= 248
336= 258
346= 268
356= 278
24 - 47
senary (base 6) to octal (base 8)
406= 308
416= 318
426= 328
436= 338
446= 348
456= 358
506= 368
516= 378
526= 408
536= 418
546= 428
556= 438
1006= 448
1016= 458
1026= 468
1036= 478
1046= 508
1056= 518
1106= 528
1116= 538
1126= 548
1136= 558
1146= 568
1156= 578
48 - 71
senary (base 6) to octal (base 8)
1206= 608
1216= 618
1226= 628
1236= 638
1246= 648
1256= 658
1306= 668
1316= 678
1326= 708
1336= 718
1346= 728
1356= 738
1406= 748
1416= 758
1426= 768
1436= 778
1446= 1008
1456= 1018
1506= 1028
1516= 1038
1526= 1048
1536= 1058
1546= 1068

senary (base 6)

The senary numeral system (also known as base-6 or heximal) has six as its base. It has been adopted independently by a small number of cultures. Like decimal, it is a semiprime, though being the product of the only two consecutive numbers that are both prime (2 and 3) it has a high degree of mathematical properties for its size. As six is a superior highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.