The ternary numeral system (also called base-3) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log23 (about 1.58496) bits of information.
ternary (base 3) | base 30 | ternary (base 3) | base 30 |
---|---|---|---|
1 | = 1 | 102 | = b |
2 | = 2 | 110 | = c |
10 | = 3 | 111 | = d |
11 | = 4 | 112 | = e |
12 | = 5 | 120 | = f |
20 | = 6 | 121 | = g |
21 | = 7 | 122 | = h |
22 | = 8 | 200 | = i |
100 | = 9 | 201 | = j |
101 | = a | 202 | = k |
base 30 | ternary (base 3) | base 30 | ternary (base 3) |
---|---|---|---|
1 | ≈ 1 | b | ≈ 102 |
2 | ≈ 2 | c | ≈ 110 |
3 | ≈ 10 | d | ≈ 111 |
4 | ≈ 11 | e | ≈ 112 |
5 | ≈ 12 | f | ≈ 120 |
6 | ≈ 20 | g | ≈ 121 |
7 | ≈ 21 | h | ≈ 122 |
8 | ≈ 22 | i | ≈ 200 |
9 | ≈ 100 | j | ≈ 201 |
a | ≈ 101 | k | ≈ 202 |
ternary (base 3) | base 30 |
---|---|
1 | = 1 |
2 | = 2 |
10 | = 3 |
11 | = 4 |
12 | = 5 |
20 | = 6 |
21 | = 7 |
22 | = 8 |
100 | = 9 |
101 | = a |